博客
关于我
数据结构第三天
阅读量:281 次
发布时间:2019-03-01

本文共 3126 字,大约阅读时间需要 10 分钟。

???????????????

????????????????????????????????????????????????????????????????

1. ???????

??????????????????????????????Python???????????????????????Python???????????????????????????????????????????

?????????????????????????????????????????????????????????????????????????????

2. Python???????

?Python?????????????????????????????????

a = 10b = 20

?????????a?b??????????????????Python?????????????????????????????????????????????????

a, b = b, a

???????????

a, b = 20, 10

????????????????????????????????????????

3. Python?????

??????????????????????????????????????????????

class Node(object):    """???"""    def __init__(self, elem):        self.elem = elem        self.next = None

???????????

  • is_empty()??????????
  • length()????????
  • travel()??????
  • add(item)?????????
  • append(item)?????????
  • insert(pos, item)???????????
  • remove(item)????????
  • search(item)??????????

???????????

class SingleLinkList(object):    """????"""    def __init__(self, node=None):        self.__head = node  # ????    def is_empty(self):        """????????"""        return self.__head is None    def length(self):        """??????"""        count = 0        cur = self.__head        while cur is not None:            count += 1            cur = cur.next        return count    def travel(self):        """???????????"""        cur = self.__head        while cur is not None:            print(cur.elem, end=" ")            cur = cur.next        print()    def add(self, item):        """??????????"""        node = Node(item)        node.next = self.__head        self.__head = node    def append(self, item):        """??????????"""        node = Node(item)        if self.is_empty():            self.__head = node        else:            cur = self.__head            while cur.next is not None:                cur = cur.next            cur.next = node    def insert(self, pos, item):        """??????????"""        if pos <= 0:            self.add(item)        elif pos >= self.length():            self.append(item)        else:            pre = self.__head            count = 0            while count < pos - 1:                pre = pre.next                count += 1            node = Node(item)            node.next = pre.next            pre.next = node    def remove(self, item):        """??????"""        cur = self.__head        pre = None        while cur is not None:            if cur.elem == item:                if pre is None:                    self.__head = cur.next                else:                    pre.next = cur.next                break            pre = cur            cur = cur.next    def search(self, item):        """????????"""        cur = self.__head        while cur is not None:            if cur.elem == item:                return True            cur = cur.next        return False

4. ??????

????????????????

  • ???????????????????????
  • ????????????????????????????
  • ????????????????????????????

??????????????????????????

5. ????????

?????????????????

  • ????????????????????????????????????????????????
  • ???????????????????????????????????????
  • ????????????????????????????????????
  • ?????????????????????????????????????

    转载地址:http://pkto.baihongyu.com/

    你可能感兴趣的文章
    NIS服务器的配置过程
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>